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Abstract
Some classical types of nonlinear wave motion in polar coordinates are studied
within quadratic approximation. When the nonlinear quadratic terms in the
wave equation are arbitrary, the usual perturbation techniques used in polar
coordinates leads to overdetermined systems of linear algebraic equations
for the unknown coefficients. However, we show that these overdetermined
systems are compatible with the special case of the nonlinear shallow water
equation and express explicitly the coefficients of the first two harmonics as
polynomials of the Bessel functions of radius and of the trigonometric functions
of angle. It gives a series of solutions to the nonlinear shallow water equation
that are periodic in time and found with the same accuracy as the equation is
derived.

PACS number: 02.30.Gp

1. Introduction

The two-dimensional nonlinear wave equation for a potential φ(x1, x2, t)

−κφtt + �φ +
α

2
(∇φ · ∇φ)t +

β

2

(
φ2

t

)
t
= 0 (1)

describes the long surface water waves (see derivation in [3]) and the two-dimensional waves
in an isentropic gas flow for the non-dissipative case (see [7]). Given in polar coordinates,
equation (1) for ϕ(r, θ, t) = φ(x1, x2, t) can be written as follows:

−κϕtt +
1

r
ϕr + ϕrr +

1

r2
ϕθθ +

α

2

(
ϕ2

r +
1

r2
ϕ2

θ

)
t

+
β

2

(
ϕ2

t

)
t
= 0. (2)

In his classic book Hydrodynamics [1, pp 191–5], Lamb considers at least three special
cases of long linear waves in polar coordinates (θ , r). The first one is axisymmetric waves
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propagating over a horizontal bottom (3). The second one is the simplest unsymmetrical
wave motion (4) in a circular basin. The third one gives a rough representation of the
semidiurnal tide in a polar basin bounded by a small circle of latitude (5):

ϕ1(r, θ, t) = J0(kr) sin(ωt), (3)

ϕ1(r, θ, t) = J1(kr) cos θ sin(ωt), (4)

ϕ1(r, θ, t) = J2(kr) cos 2θ sin(ωt), (5)

where k =
√

κω2.
In this paper we present a family of approximate solutions to equation (2) in polar

coordinates (θ , r) which gives, in particular, the next order nonlinear corrections to the well
known linear solutions. These solutions are found with the same accuracy as the equation
is derived. (Axisymmetric nonlinear waves were the subject of numerical investigations
in a series of papers. See the bibliography in [4].) The specific corrections for linear
solutions (3)–(5) and the corresponding numerical examples are given in section 4.

The potential ϕ(r, θ, t) is assumed to be regular in the vicinity of the origin of the
coordinates and expanded in Fourier series with respect to t:

ϕ(r, θ, t) = ε[S1(r, θ) sin(ωt) + C1(r, θ) cos(ωt)]

+ ε2[S2(r, θ) sin(2ωt) + C2(r, θ) cos(2ωt)] + · · · . (6)

Then the functions S1(r, θ) and C1(r, θ) satisfy the Helmholz equation

Zrr +
1

r
Zr +

1

r2
Zθθ + κω2Z = 0, (7)

and their Fourier expansions with respect to θ can be written as follows:

S1(r, θ) = a0J0(kr) + J1(kr)(a1 sin θ + b1 cos θ) + · · · + Ji(kr)(ai sin iθ + bi cos iθ) + · · · ,
(8)

C1(r, θ) = c0J0(kr) + J1(kr)(c1 sin θ + d1 cos θ) + · · · + Ji(kr)(ci sin iθ + di cos iθ) + · · · ,
(9)

(see, for example [2]). In addition, we assume that series (8) and (9) are truncated and contain
only N terms.

The functions S2(r, θ) and C2(r, θ) can be expanded in the following Fourier series:

S2(r, θ) = M0(r) +
∞∑
i=1

(Mi(r) sin iθ + Ni(r) cos iθ) (10)

C2(r, θ) = P0(r) +
∞∑
i=1

(Pi(r) sin iθ + Qi(r) cos iθ). (11)

We search for the functions Mi(r),Ni(r), Pi(r) and Qi(r) in the form

R00J
2
0 + R01J0J1 + R11J

2
1 , (12)

where RAB are polynomials of r−1 and r with unknown coefficients and of unknown degree n:

RAB =
n∑

k=−n

CAB
k rk. (13)

However, if ai, bi, ci and di are fixed, substituting (10) and (11) in (2), we obtain
overdetermined systems of linear algebraic equations for CAB

k .
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The key point of consideration is that these overdetermined systems are compatible.
This allows us to construct explicit expressions for the functions S2 and C2 in the form (10)
and (11), which are homogenous polynomials of the Bessel functions J0(kr), J1(kr) and the
trigonometric functions of the angular variable θ . Their coefficients are polynomials of r−1

and r. The constructed series (6) and (8)–(11) can be considered as a generalization of the
separation of variables method for the nonlinear wave equation.

2. Periodic problem, first reduction

Doing a suitable scaling, we can assume that k = 1 without loss of generality. Substituting
(6) in (2), we obtain the following equations of the order ε2:

S2rr +
1

r
S2r +

1

r2
S2θθ + 4S2 = β

2κω

(
S2

1 − C2
1

) − αω

2r2

(
S2

1θ − C2
1θ

) − αω

2

(
S2

1r − C2
1r

)
, (14)

C2rr +
1

r
C2r +

1

r2
C2θθ + 4C2 = β

κω
S1C1 − αω

(
S1θC1θ

r2
+ S1rC1r

)
. (15)

Note that there is no terms independent of t in the order ε2 since the nonlinear terms in (2)
contain differentiation with respect to t. Our purpose is to find particular solutions to (14) and
(15) in terms of Bessel functions. We rewrite these equations in the following form:

S2rr +
1

r
S2r +

1

r2
S2θθ + 4S2 = λ

(
S2

1 − C2
1

)
+ µ

(
1

r2
S2

1θ − 1

r2
C2

1θ + S2
1r − C2

1r

)
, (16)

C2rr +
1

r
C2r +

1

r2
C2θθ + 4C2 = 2λS1C1 + 2µ

(
S1θC1θ

r2
+ S1rC1r

)
. (17)

The right-hand sides of (16) and (17) can be represented as follows:

λ
(
S2

1 − C2
1

)
+ µ

(
1

r2
S2

1θ − 1

r2
C2

1θ + S2
1r − C2

1r

)
≡ (λ − µ)

(
S2

1 − C2
1

)

+ µ

(
1

r2
S2

1θ − 1

r2
C2

1θ + S2
1r − C2

1r + S2
1 − C2

1

)

2λS1C1 + 2µ

(
S1θC1θ

r2
+ S1rC1r

)
≡ 2(λ − µ)S1C1 + 2µ

(
S1θC1θ

r2
+ S1rC1r + S1C1

)
.

It can be easily checked that 1
2

(
S2

1 − C2
1

)
is a particular solution to the equation

S2rr +
1

r
S2r +

1

r2
S2θθ + 4S2 = S2

1 − C2
1 +

1

r2
S2

1θ − 1

r2
C2

1θ + S2
1r − C2

1r (18)

and 1
2S1C1 is a particular solution to the equation

C2rr +
1

r
C2r +

1

r2
C2θθ + 4C2 = S1C1 +

1

r2
S1θC1θ + S1rC1r . (19)

So the problem is reduced to finding a particular solution to the equation

S2rr +
1

r
S2r +

1

r2
S2θθ + 4S2 = S2

1 − C2
1 , (20)

and to the equation

C2rr +
1

r
C2r +

1

r2
C2θθ + 4C2 = S1C1, (21)

which is the purpose of the following section.
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The general solution to (14) and (15) can be represented as a linear combination of the
particular solution and the general solution to the homogenous equation

Z2rr +
1

r
Z2r +

1

r2
Z2θθ + 4Z2 = 0, (22)

which can also be expressed in terms of the Bessel functions.

3. Reduction to ordinary differential equations

Substituting (8) and (9) in the right-hand side of (20) and (21), we have expressions of the
following form:

S2
1 − C2

1 = V s
0 (r) +

2N∑
i=1

(
V s

i (r) sin iθ + Ws
i (r) cos iθ

)

S1C1 = V c
0 (r) +

2N∑
i=1

(
V c

i (r) sin iθ + Wc
i (r) cos iθ

)
,

(23)

where V s
i (r)Ws

i (r), V c
i (r) and Wc

i (r) are known expressions of r. They are of the form

V s
i (r) =

i∑
j=0

αV s
ij Jj (r)Ji−j (r) +

N−i∑
j=0

βV s
ij Jj+i (r)Jj (r),

Ws
i (r) =

i∑
j=0

αWs
ij Jj (r)Ji−j (r) +

N−i∑
j=0

βWs
ij Jj+i (r)Jj (r),

V c
i (r) =

i∑
j=0

αV c
ij Jj (r)Ji−j (r) +

N−i∑
j=0

βV c
ij Jj+i (r)Jj (r),

Ws
i (r) =

i∑
j=0

αWs
ij Jj (r)Ji−j (r) +

N−i∑
j=0

βWs
ij Jj+i (r)Jj (r),

(24)

where αV s
ij , βV s

ij , αWs
ij , βWs

ij , αV c
ij , βV c

ij , αWc
ij and βWc

ij are known constants.
We seek particular solutions to equations (20) and (21) in the form (10) and (11). The

problem is naturally decomposed in the set of ordinary differential equations for the functions
Mi,Ni, Pi and Qi . Denoting by Bi the differential operator

d2

dr2
+

1

r

d

dr
+

(
4 − i2

r2

)
,

we can write this set as follows:

Bi (Mi) = V s
i , Bi (Ni) = Ws

i , Bi (Pi) = V c
i , Bi (Qi) = Wc

i , (25)

and our aim is to give their explicit particular solutions in terms of J0(r) and J1(r).
Let us recall two identities concerning the Bessel function (see, for example, [8]).

2n

z
Jn(z) = Jn−1(z) + Jn+1(z), (A)

or

Jn+1(z) = 2n

z
Jn(z) − Jn−1(z) (A′)

J ′
n(ż) = 1

2 (Jn−1(z) − Jn+1(z)). (B)
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Proposition 1. For each pair of natural numbers (i, k), i � k � 0, the equation

Bi (Z) = Jk(r)Ji−k(r)

has a particular solution of the form

Q00J
2
0 + Q01J0J1 + Q11J

2
1 , (26)

where QAB are polynomials of r−1 and r

QAB =
m∑

k=−n

CAB
k rk. (27)

This solution will be denoted by B+(i, k).

Proof. Let us consider two cases, i is even or odd:

Case i = 2q. Consider the (q + 1)-dimensional vector space E2q generated by Jk(r)J2q−k(r),

k = 0, 1, . . . , q. We have

B2q(Jk(r)J2q−k(r)) = 2

(
1 − (2q − k)k

r2

)
J2q−k(r)Jk(r) + 2J ′

2q−k(r)J
′
k(r)

= −Jk+1(r)J2q−k−1(r) + 2Jk(r)J2q−k(r) − Jk−1(r)J2q−k+1(r),

where identities (A) and (B) are used. The functions B2q(Jk(r)J2q−k(r)), k = 1, . . . , q

generate the q-dimensional subspace E′
2q in E2q . In addition, consider the function

K2q = − r
2Jq(r)J

′
q(ṙ). It can also be checked that B2q(K2q) = J 2

q (r) (using again identities
(A) and (B)) and that J 2

q (r) does not belong to E′
2q . Therefore, the functions B2q(K2q) and

B2q(Jk(r)J2q−k(r)), k = 1, . . . , q, generate E2q , which gives the required result after repeated
use of identities (A′) and (B).

Case i = 2q + 1. Consider the (q + 1)-dimensional space vector E2q+1 generated by
Jk(r)J2q+1−k(r), k = 0, 1, . . . , q. Arguments similar to that in the previous case show that

B2q+1(Jk(r)J2q+1−k(r)) = −Jk+1(r)J2q−k(r) + 2Jk(r)J2q−k+1(r) − Jk−1(r)J2q−k+2(r).

The functions B2q+1(Jk(r)J2q+1−k(r)), k = 1, . . . , q generate again the q-dimensional

subspace E′
2q in E2q . In addition, consider the function K2q+1 = (

q2

4r
− r

4

)
J 2

q (r)− q

2 Jq(r)J
′
q(ṙ) +

r
4J ′2

q (ṙ). It can also be checked that B2q+1(K2q+1) = Jq(r)Jq+1(r) and Jq(r)Jq+1(r) does not
belong to E′

2q+1. Therefore, the functions B2q+1(K2q+1) and B2q+1(Jk(r)J2q+1−k(r)), k =
1, . . . , q generate E2q+1, which gives the required result after repeated use of identities (A′)
and (B). �

Proposition 2. For each pair of natural numbers (i, k), k � 0, i � 0, the equation

Bi (Z) = Ji+k(r)Jk(r)

has a particular solution of the form

Q00J
2
0 + Q01J0J1 + Q11J

2
1 , (28)

where QAB are polynomials of r−1 and r

QAB =
m∑

k=−n

CAB
k rk. (29)

This solution will be denoted by B−(i, k).
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Proof. It can easily be checked that

Bi (Ji+k(r)Jk(r)) = Jk−1(r)Ji+k−1(r) + 2Jk(r)Ji+k(r) + Jk+1(r)Ji+k+1(r).

Therefore, Jk(r)Ji+k(r) can be represented as a linear combination of the following functions:
Bi (Ji+l (r)Jl(r)), l = 1, . . . , k − 1, J−1(r)Ji−1(r) and J−2(r)Ji−2(r). But

J−1(r)Ji−1(r) = −J1(r)Ji−1(r) and J−2(r)Ji−2(r) = J2(r)Ji−2(r).

So, according to proposition 1, J−1(r)Ji−1(r) and J−2(r)Ji−2(r) can be represented as a
linear combination of Bi (Jk(r)Ji−k(r)), which proves proposition 2. �

Algorithm for constructing the nonlinear solutions

Step 1. The coefficients ai, bi, ci and di defining the solutions S1(r, θ) and C1(r, θ) of the
classical linear problem (see (8) and (9)) are determined using boundary conditions.

Step 2. The coefficients αV s
ij , βV s

ij , αWs
ij , βWs

ij , αV c
ij , βV c

ij , αWc
ij , βWc

ij are determined substituting
(8) and (9) into (23), collecting the similar terms, and using trigonometric transformations
(see (24)). Thus the right-hand sides of equations (20) and (21) are calculated.

Step 3. According to propositions 1 and 2, the expressions

S
part
2 =

2N∑
i=0





 i∑

j=0

αV s
ij B+(i, j) +

N−i∑
j=0

βV s
ij B−(i, j)


 sin iθ

+


 i∑

j=0

αWs
ij B+(i, j) +

N−i∑
j=0

βWs
ij B−(i, j)


 cos iθ




C
part
2 =

2N∑
i=0





 i∑

j=0

αWc
ij B+(i, j) +

N−i∑
j=0

βWc
ij B−(i, j)


 sin iθ

+


 i∑

j=0

αWc
ij B+(i, j) +

N−i∑
j=0

βWc
ij B−(i, j)


 cos iθ




(30)

give the solutions to equations (20) and (21).

Step 4. Values on the boundary of the derived nonlinear expressions are calculated.

Step 5. A pair of general solutions Shom
2 (r, θ) and Chom

2 (r, θ) to the homogenous equation,

Z2rr +
1

r
Z2r +

1

r2
Z2θθ + 4Z2 = 0, (31)

is chosen in such a manner that the resulting solutions satisfy the boundary conditions.
Then

εS1 sin(ωt) + ε2
(

1
2

(
S2

1 − C2
1

)
+ S

part
2 + Shom

2

)
sin(2ωt) + εC1 cos(ωt)

+ ε2
(
S1C1 + C

part
2 + Chom

2

)
cos(2ωt) (32)

is a required solution to equation (2).
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5 10 15 20
r

-0.2

-0.1

0.1

0.2

ε η

Figure 1. Axisymmetric standing waves. Dependence of surface elevation εη on radius r. The
solid line is ε2-order solution and the dashed line is the first-order solution. ω = 0.6, ε = 0.2.

4. Examples

Here I apply the developed technique for constructing the explicit nonlinear corrections for
classic linear solutions (3)–(5) of Lamb.

Axisymmetric standing waves. In the axisymmetric case, the calculation according to the
presented algorithm gives the following expression:

ϕ(r, θ, t) = εJ0(kr) sin(ωt) + ε2

(
ω

2
J 2

0 +
3ω

4
rJ0J1

)
sin(2ωt). (33)

A numerical example, which gives the surface wave level in dependence on radius r, is shown
on figure 1.

Simplest unsymmetrical water waves. In this case the potential is given by the expression

ϕ1(r, θ, t) = εJ1(r) cos θ sin(ωt) + ε2S2(r, θ) sin(2ωt), (34)

where

S2(r, θ) =
(

3ω3

8
J 2

0 − 3ω3

8
rJ0J1 − ω

4
J 2

1

)
+

(
−3ω3

8
rJ0J1 +

ω

8
J 2

1

)
cos 2θ. (35)

A numerical calculation gives the contours of surface waves shown in figure 2.

Unsymmetrical water waves (semidiurnal tide). A potential is given by the expression

ϕ1(r, θ, t) = εJ2(r) cos 2θ sin(ωt) + ε2S2(r, θ) sin(2ωt), (36)

where

S2(r, θ) =
(

J 2
0 −

(
3r

8
+

1

r

)
J0J1 +

(
−3

4
+

1

r2

)
J 2

1

)

+

(
−1

2
J 2

0 +

(
−2

r
+

3r

8

)
J0J1 +

(
− 2

r2
+

3

4

)
J 2

1

)
cos 4θ. (37)

The contours of surface waves are shown in figure 3.
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Figure 2. Contours of the simplest unsymmetric waves for t = 3
4 π, 5

6 π, 11
12 π, π . The solid lines

are ε2-order solutions and the dashed lines are ε-order solutions. ω = 1.0, ε = 0.2.
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Figure 3. Contours of more complicated unsymmetric waves for t = 3
4 π, 5

6 π, 11
12 π, π . The solid

lines are ε2-order solutions and the dashed lines are ε-order solutions. ω = 1.0, ε = 0.2.
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5. Conclusions

An algorithm for constructing a family of nonlinear solutions to the nonlinear wave equation
in polar coordinates has been presented.

The linear versions of these problems, when the terms only of first order in ε are retained,
have been studied in the classic books (see [1, 2]).

The derived formulae are obtained by the method of unknown coefficients as solutions of
some overdetermined systems of algebraic linear equations. The reason for their solvability
remains obscure at the moment. Probably this is some kind of hidden symmetry.

A similar approach was used in [5, 6] for describing the long periodic water waves on a
slope in the high-order shallow water approximation and in [7] for describing the first harmonic
in θ for an isentropic gas flow in the non-dissipative case.

The linear generalized versions of equation (1) for scalar or vector potential are used in
almost all branches of physics: from the elasticity theory to the plasma dynamics. Taking
account for nonlinearity usually generates quadratic terms in the generalized equation (1).
The author conjectures that the similar approach can be applied for studying a wide class of
nonlinear wave equations in polar or cylindrical coordinates.

Acknowledgment

The author thanks the anonymous referees for helpful comments.

References

[1] Lamb H 1932 Hydrodynamics 6th edn (Cambridge: Cambridge University Press)
[2] Rayleigh W 1929 Theory of Sound (London: McMillan)
[3] Mei C C 1983 The Applied Dynamics of Ocean Surface Waves (New York: Wiley)
[4] Vanden-Broeck J-M 2001 Water waves and related free surface flows Free Surface Flows: IUTAM Symp.

(Birmingham 2000) (Dordrecht: Kluwer) pp 29–38
[5] Shermenev A and Shermeneva M 2000 Long periodic waves on an even beach Phys. Rev. E 5 6000–2
[6] Shermenev A 2001 Nonlinear periodic waves on a beach Geophys. Astrophys. Fluid Dyn. 1–2 1–14
[7] Shermenev A 2003 Nonlinear acoustic waves in tubes Acta Acust. 89 426–9
[8] Whittaker E T and Watson G N 1927 A Course of Modern Analysis 4th edn (Cambridge: Cambridge University

Press)


